Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virus Adaptation and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virus Adaptation and Treatment
Article . 2010 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virus Adaptation and Treatment
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virus Adaptation and Treatment
Article . 2010 . Peer-reviewed
Data sources: Dove Medical Press
versions View all 2 versions
addClaim

p38 and STAT3 activation by vGPCR in KSHV-infected cells

Authors: Liu, Mingli;

p38 and STAT3 activation by vGPCR in KSHV-infected cells

Abstract

Mingli Liu, Shanchun GuoSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USAAbstract: The molecular mechanism whereby viral G protein-coupled receptor (vGPCR) signaling regulates vascular endothelial growth factor (VEGF) expression in Kaposi sarcoma (KS) formation remains incompletely defined. mECK36 cells, generated by transfection of mouse bone marrow endothelial cells with Kaposi’s sarcoma-associated herpesviruses (KSHV) bacterial artificial chromosome (KSHVBac36), have been reported to be angiogenic, tumorigenic, and suitable for demonstrating a nonredundant role for vGPCR in KSHV-mediated tumorigenesis.1 In this report we used mECK36 and the cells composed of wild-type KSHVBac36 or the cells without vGPCR, namely vGPCR-null KSHVBac36 mutant, to dissect the molecular mechanisms of VEGF secretion induced by vGPCR in the context of KSHV infection. We found that vGPCR activates VEGF transcription via p38 MAPK and STAT3 in mECK36 and mECK36-derived cell models. We also found that in cells containing KSHV genome, STAT3 is tyrosine-phosphorylated and translocated into the nucleus, transactivating the target VEGF gene by binding to the specific DNA element TT (N4–5) AA in a strictly vGPCR-dependent manner. Moreover, treatment of mECK36-derived cells with AG490 or a dominant negative STAT3 DNA vector showed strong inhibitory effects on vGPCR-induced VEGF promoter activity. In addition, vGPCR can upregulate STAT3 mRNA levels. Taken together, our findings show that vGPCR plays a nonredundant role in STAT3 activation in KSHV infected cells and that this activation plays an important role in the connection of the viral oncogene vGPCR and VEGF upregulation. Our results indicate the broad signaling activating capacity of vGPCR in the context of KSHV infection and suggest that the STAT3 pathway could be targeted for preventing KSHV-mediated angiogenesis in KS.Keywords: Kaposi’s sarcoma, vGPCR, p38, STAT3, KSHV

Keywords

Virus Adaptation and Treatment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Cancer Research