<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A major task in particle physics is the measurement of rare signal processes. Even modest improvements in background rejection, at a fixed signal efficiency, can significantly enhance the measurement sensitivity. Building on prior research by others that incorporated physical symmetries into neural networks, this work extends those ideas to include additional physics-motivated features. Specifically, we introduce energy-dependent particle interaction strengths, derived from leading-order SM predictions, into modern deep learning architectures, including Transformer Architectures (Particle Transformer), and Graph Neural Networks (Particle Net). These interaction strengths, represented as the SM interaction matrix, are incorporated into the attention matrix (transformers) and edges (graphs). Our results in event classification show that the integration of all physics-motivated features improves background rejection by 10\%-40\%10%−40% over baseline models, with an additional gain of up to 9\%9% due to the SM interaction matrix. This study also provides one of the broadest comparisons of event classifiers to date, demonstrating how various architectures perform across this task. A simplified statistical analysis demonstrates that these enhanced architectures yield significant improvements in signal significance compared to a graph network baseline.
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), Physics, QC1-999, FOS: Physical sciences, High Energy Physics, High Energy Physics - Experiment
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), Physics, QC1-999, FOS: Physical sciences, High Energy Physics, High Energy Physics - Experiment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |