Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SciPost Physicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SciPost Physics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SciPost Physics
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Audible axions with a booster: Stochastic gravitational waves from rotating ALPs

Authors: Madge, Eric; Ratzinger, Wolfram; Schmitt, Daniel; Schwaller, Pedro;

Audible axions with a booster: Stochastic gravitational waves from rotating ALPs

Abstract

Gravitational waves provide a novel way to probe axions or axion-like particles coupled to a dark photon field, even in the absence of couplings to Standard Model particles. In the conventional misalignment mechanism, the generation of an observable stochastic gravitational wave background, however, requires large axion decay constants. We here investigate the gravitational wave signal generated within the kinetic misalignment scenario, where the axion is assumed to have a large initial velocity. Its kinetic energy then provides a sufficiently high energy budget to generate a detectable gravitational wave signal also at lower values of the decay constant. We obtain an analytic estimate as well as perform numerical simulations of the corresponding gravitational wave signal, and evaluate its detectability at current and future gravitational wave observatories. We further present the corresponding projected constraints on the parameter space of the model, along with the parameter regions in which the dark photon or axion constitute dark matter, or in which the baryon asymmetry of the Universe is generated via the axiogenesis mechanism. Finally, we compute the GW production from the fragmentation of rotating axions, which is however difficult to observe experimentally.

Keywords

High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Cosmology and Nongalactic Astrophysics (astro-ph.CO), Physics, QC1-999, FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
Published in a Diamond OA journal