
In the present paper, a hidden-semi Markov model (HSMM) based speech synthesis system is proposed. In a hidden Markov model (HMM) based speech synthesis system which we have proposed, rhythm and tempo are controlled by state duration probability distributions modeled by single Gaussian distributions. To synthesis speech, it constructs a sentence HMM corresponding to an arbitralily given text and determine state durations maximizing their probabilities, then a speech parameter vector sequence is generated for the given state sequence. However, there is an inconsistency: although the speech is synthesized from HMMs with explicit state duration probability distributions, HMMs are trained without them. In the present paper, we introduce an HSMM, which is an HMM with explicit state duration probability distributions, into the HMM-based speech synthesis system. Experimental results show that the use of HSMM training improves the naturalness of the synthesized speech.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
