<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.21427/d7wn5q
The Job-shop scheduling is one of the most important industrial activities, especially in manufacturing planning. The problem complexity has increased along with the increase in the complexity of operations and product-mix. To solve this problem, numerous approaches have been developed incorporating discrete event simulation methodology. The scope and the purpose of this paper is to present a survey which covers most of the solving techniques of Job Shop Scheduling (JSS) problem. A classification of these techniques has been proposed: Traditional Techniques and Advanced Techniques. The traditional techniques to solve JSS could not fully satisfy the global competition and rapidly changing in customer requirements. Simulation and Artificial Intelligence (AI) have proven to be excellent strategic tool for scheduling problems in general and JSS in particular. The paper defined some AI techniques used by manufacturing systems. Finally, the future trends are proposed briefly.
Other Operations Research, Systems Engineering and Industrial Engineering, Job Shop Scheduling
Other Operations Research, Systems Engineering and Industrial Engineering, Job Shop Scheduling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |