Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dublin Institute of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aspects of Quantum Theory in General Relativity and Cosmology

Authors: McCaughey, Eamon;

Aspects of Quantum Theory in General Relativity and Cosmology

Abstract

After a brief introduction to Cosmology some quantum aspects of General Relativity and cosmology are presented. The radial motion of a massive particles in the ergosphere of the Kerr Black Hole is considered. Screening of Hawking radiation and shielding of the Penrose process is examined in the context of the region of negative energy inside the ergosphere. Tunnelling of such particles between the boundaries of the classically forbidden region will be considered and the transmission coefficient determined. The evolution of Primordial black holes in standard and Loop Quantum Cosmology is reviewed. A stability analysis of Einstein’s universe in both classical General Relativity and semiclassical Loop Quantum Cosmology regimes is presented. The stability properties of the General Relativity model are significantly altered due to Loop Quantum Gravity corrections. Comparisons between both dynamical systems are considered on the basis of these modifications. The Loop Quantum Cosmology solutions are restricted to an open universe model (k = -1) and represent a cyclic universe. The integrals of motion for both systems are found and their Hamiltonian structure determined.

Related Organizations
Keywords

Relativity, Astrophysics and Astronomy, Penrose Process, and Gravity, Physical Sciences and Mathematics, Hawking radiation, 500, Kerr Black hole, Loop Quantum Cosmology, 530, Mathematics, Cosmology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities