Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
Pure and Applied Analysis
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Computing generalized eigenfunctions in rigged Hilbert spaces

Authors: Matthew J. Colbrook; Andrew J. Horning; Tianyiwa Xie;

Computing generalized eigenfunctions in rigged Hilbert spaces

Abstract

We introduce a simple, general, and convergent scheme to compute generalized eigenfunctions of self-adjoint operators with continuous spectra on rigged Hilbert spaces. Our approach does not require prior knowledge about the eigenfunctions, such as asymptotics or other analytic properties. Instead, we carefully sample the range of the resolvent operator to construct smooth and accurate wave packet approximations to generalized eigenfunctions. We prove high-order convergence in key topologies, including weak-star convergence for distributional eigenfunctions, uniform convergence on compact sets for locally smooth generalized eigenfunctions, and convergence in seminorms for separable Frechet spaces, covering the majority of physical scenarios. The method's performance is illustrated with applications to both differential and integral operators, culminating in the computation of spectral measures and generalized eigenfunctions for an operator associated with Poincare's internal waves problem. These computations corroborate experimental results and highlight the method's utility for a broad range of spectral problems in physics.

Keywords

Numerical analysis in abstract spaces, Operator theory, Computational methods for problems pertaining to operator theory, generalized eigenfunction, Numerical Analysis (math.NA), Computational methods for problems pertaining to functional analysis, Mathematics - Spectral Theory, rigged Hilbert space, internal waves, FOS: Mathematics, limiting absorption principle, Mathematics - Numerical Analysis, (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces, Acceleration of convergence in numerical analysis, continuous spectrum, Spectral Theory (math.SP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green