Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Path-Conditional Forward Volatility

Authors: Carey, Alexander;

Path-Conditional Forward Volatility

Abstract

In derivatives modelling, it has often been necessary to make assumptions about the volatility of the underlying variable over the life of the contract. This can involve specifying an exact trajectory, as in the Black and Scholes (1973), Merton (1973) or Black (1976) models; one that depends on the level of the underlying variable as in the local volatility models of Dupire (1994), Derman and Kani (1994) and Rubinstein (1994); or fixing the parameters of a more general stochastic volatility process as in Hull and White (1987) or Heston (1993). These forward-looking assumptions are by their very nature destined to be disproved, and what is more are at odds with the frequent model recalibration that (rightly) takes place in practice. In Carey (2005), the Black-Scholes analytical framework is extended, via the definition of higher-order volatilities and the derivation of moment formulae for the case where they are deterministic. In this paper, we show that the same formulae can be obtained under markedly weaker assumptions, which leave the future volatilities unspecified. Instead, we impose constraints on new, related quantities, which we term "path-conditional forward volatilities." Under this scheme, the model inputs are no longer the future spot volatilities, but rather their forward counterparts. One consequence, we show, is that contrary to conventional wisdom, the Black-Scholes formula can in principle be used without any reference to future volatility.

Keywords

higher-order volatility; higher-order moments; forward volatility; option pricing, jel: jel:G12, jel: jel:G13

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze