
The Random Forest (RF) classifier is often claimed to be relatively well calibrated when compared with other machine learning methods. Moreover, the existing literature suggests that traditional calibration methods, such as isotonic regression, do not substantially enhance the calibration of RF probability estimates unless supplied with extensive calibration data sets, which can represent a significant obstacle in cases of limited data availability. Nevertheless, there seems to be no comprehensive study validating such claims and systematically comparing state-of-the-art calibration methods specifically for RF. To close this gap, we investigate a broad spectrum of calibration methods tailored to or at least applicable to RF, ranging from scaling techniques to more advanced algorithms. Our results based on synthetic as well as real-world data unravel the intricacies of RF probability estimates, scrutinize the impacts of hyper-parameters, compare calibration methods in a systematic way. We show that a well-optimized RF performs as well as or better than leading calibration approaches.
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
