Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respiratory Physiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Respiratory Physiology & Neurobiology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://doi.org/10.2139/ssrn.5...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measurement of Gas Exchange Surface Area from Dlno and Dlco

Authors: Colin, Borland;

Measurement of Gas Exchange Surface Area from Dlno and Dlco

Abstract

The estimated diffusion coefficients for nitric oxide and carbon monoxide in human plasma and red cells can be inserted into the equations for Fick's 1st and 2nd laws. The surface area of the alveolar membrane and exposed red cells can then be calculated from DLNO and DLCO (in hyperoxia). This yields a value of 18.7 m2 for alveolar capillary membrane via DLNO, 19.6 m2 for red cell surface area via DLCO in a seated human at rest and = 2.03m2 for a membrane oxygenator. The values for a seated human are substantially less than morphometric values. This is likely due to a considerable functional reserve in the lung.

Related Organizations
Keywords

Pulmonary Alveoli, Male, Carbon Monoxide, Erythrocytes, Pulmonary Gas Exchange, Humans, Pulmonary Diffusing Capacity, Nitric Oxide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities