Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational Physics
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.2139/ssrn.5...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

Deep Generalized Green's Function

Authors: Rixi Peng; Juncheng Dong; Jordan M. Malof; Willie J. Padilla; Vahid Tarokh;

Deep Generalized Green's Function

Abstract

In this study, we address the challenge of obtaining a Green's function operator for linear partial differential equations (PDEs). The Green's function is well-sought after due to its ability to directly map inputs to solutions, bypassing the need for common numerical methods such as finite difference and finite elements methods. However, obtaining an explicit form of the Green's function kernel for most PDEs has been a challenge due to the Dirac delta function singularity present. To address this issue, we propose the Deep Generalized Green's Function (DGGF) as an alternative, which can be solved for in an efficient and accurate manner using neural network models. The DGGF provides a more efficient and precise approach to solving linear PDEs while inheriting the reusability of the Green's function, and possessing additional desirable properties such as mesh-free operation and a small memory footprint. The DGGF is compared against a variety of state-of-the-art (SOTA) PDE solvers, including direct methods, namely physics-informed neural networks (PINNs), Green's function approaches such as networks for Gaussian approximation of the Dirac delta functions (GADD), and numerical Green's functions (NGFs). The performance of all methods is compared on four representative PDE categories, each with different combinations of dimensionality and domain shape. The results confirm the advantages of DGGFs, and benefits of Generalized Greens Functions as an novel alternative approach to solve PDEs without suffering from singularities.

Related Organizations
Keywords

Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, FOS: Physical sciences, Computational Physics (physics.comp-ph), Computer Science - Computational Engineering, Finance, and Science, Physics - Computational Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green