
arXiv: 2412.01030
This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator.
FOS: Economics and business, Econometrics (econ.EM), Economics - Econometrics
FOS: Economics and business, Econometrics (econ.EM), Economics - Econometrics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
