
The increasing use of thermostatically controlled loads (TCLs) like refrigerators poses a significant challenge to the grid due to their potential to increase peak demand. This study introduces a novel rule-based peak-shaving algorithm to effectively manage these loads. The algorithm operates in two modes: day-ahead and real-time. In the day-ahead mode, Long Short-Term Memory (LSTM) neural networks are utilized to forecast demand and generation. A Parameter tuned Grey Wolf Optimizer (GWOP) is proposed and employed to determine the optimal generation for the initial timestep of the scheduling period. The GWOP is tuned using a brute-force grid search method to optimize its parameters. In the real-time mode, the algorithm dynamically adjusts refrigerator operations based on real-time mismatch calculations between predicted demand and generation. Dynamic flexibility thresholds are employed to determine the optimal operation of refrigerators during peak and off-peak periods. This approach aims to minimize energy consumption while maintaining thermal comfort. The algorithm's performance was evaluated using real-world data from the Spanish Transmission Service Operators (TSO). The results demonstrate a significant reduction in peak demand and total energy consumption. The algorithm with dynamic flexibility achieved a substantial 18.89% reduction in peak demand and a notable 12.12% decrease in total energy consumption.
thermostatically controlled loads, rule-based algorithm, Electrical engineering. Electronics. Nuclear engineering, peak shaving, dynamic flexibility, TK1-9971
thermostatically controlled loads, rule-based algorithm, Electrical engineering. Electronics. Nuclear engineering, peak shaving, dynamic flexibility, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
