Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carpathian Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carpathian Journal of Electrical Engineering
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Data Driven Rule-Based Peak Shaving Algorithm for Scheduling Refrigerators

Authors: Daniel KWEGYIR; Francis Effah BOAFO; Daniel OPOKU; Emmanuel Asuming FRIMPONG;

Data Driven Rule-Based Peak Shaving Algorithm for Scheduling Refrigerators

Abstract

The increasing use of thermostatically controlled loads (TCLs) like refrigerators poses a significant challenge to the grid due to their potential to increase peak demand. This study introduces a novel rule-based peak-shaving algorithm to effectively manage these loads. The algorithm operates in two modes: day-ahead and real-time. In the day-ahead mode, Long Short-Term Memory (LSTM) neural networks are utilized to forecast demand and generation. A Parameter tuned Grey Wolf Optimizer (GWOP) is proposed and employed to determine the optimal generation for the initial timestep of the scheduling period. The GWOP is tuned using a brute-force grid search method to optimize its parameters. In the real-time mode, the algorithm dynamically adjusts refrigerator operations based on real-time mismatch calculations between predicted demand and generation. Dynamic flexibility thresholds are employed to determine the optimal operation of refrigerators during peak and off-peak periods. This approach aims to minimize energy consumption while maintaining thermal comfort. The algorithm's performance was evaluated using real-world data from the Spanish Transmission Service Operators (TSO). The results demonstrate a significant reduction in peak demand and total energy consumption. The algorithm with dynamic flexibility achieved a substantial 18.89% reduction in peak demand and a notable 12.12% decrease in total energy consumption.

Keywords

thermostatically controlled loads, rule-based algorithm, Electrical engineering. Electronics. Nuclear engineering, peak shaving, dynamic flexibility, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold