Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

On Mechanism Underlying Algorithmic Collusion *

Authors: Zhang Xu; Wei Zhao 0052;

On Mechanism Underlying Algorithmic Collusion *

Abstract

Two issues of algorithmic collusion are addressed in this paper. First, we show that in a general class of symmetric games, including Prisoner's Dilemma, Bertrand competition, and any (nonlinear) mixture of first and second price auction, only (strict) Nash Equilibrium (NE) is stochastically stable. Therefore, the tacit collusion is driven by failure to learn NE due to insufficient learning, instead of learning some strategies to sustain collusive outcomes. Second, we study how algorithms adapt to collusion in real simulations with insufficient learning. Extensive explorations in early stages and discount factors inflates the Q-value, which interrupts the sequential and alternative price undercut and leads to bilateral rebound. The process is iterated, making the price curves like Edgeworth cycles. When both exploration rate and Q-value decrease, algorithms may bilaterally rebound to relatively high common price level by coincidence, and then get stuck. Finally, we accommodate our reasoning to simulation outcomes in the literature, including optimistic initialization, market design and algorithm design.

Keywords

FOS: Economics and business, FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, Economics - Theoretical Economics, Theoretical Economics (econ.TH), Computer Science - Multiagent Systems, Computer Science and Game Theory (cs.GT), Multiagent Systems (cs.MA)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green