Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Materials...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Research and Technology
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Relationship between Magnesium-Bearing Magnetite Formation and Magnetite Oxidation

Authors: Fang Zhang; Jun Peng; Weimin Gao; Yongbin Wang; Hongtao Chang; Shuang Liu; Fan Yang;

Relationship between Magnesium-Bearing Magnetite Formation and Magnetite Oxidation

Abstract

The impact of different oxidation atmospheres on the formation of magnesium-bearing magnetite in the Fe3O4–MgO and Fe2O3–MgO systems was investigated using FactSage 8.3 thermodynamic modeling, XRD, XPS, and SEM-EDS. This study also examined the influence of MgO on the compression strength, mineral phase composition, and microstructure of oxidized roasting magnetite pellets. At 500 °C, Fe3O4 oxidized into fine crystalline nuclei of Fe2O3. Subsequently, at 900 °C, Fe2O3 reacted with MgO to completely form magnesia-bearing magnetite. Conversely, in a vacuum, Fe3O4 and MgO did not produce magnesium-bearing magnetite. For the Fe2O3–MgO system under vacuum, only a small quantity of magnesia-containing magnetite was generated when the temperature reached 900 °C, which was substantially less than that produced in an O2 atmosphere from Fe3O4 with MgO. The formation of magnesia-containing magnetite was closely associated with the nucleation of hematite grains during the oxidation roasting process of magnetite. Increasing the MgO content in the pellets led to a higher MgO content in the spinel phase, while the contents in the pyroxene and slag phases remained relatively stable. Additionally, the Fe2+/(Fe2+ + Fe3+) ratio in the pellets increased as the MgO content rose. During the preparation of hematite pellets through the oxidation roasting of magnetite, the oxidation of magnetite to hematite followed by reaction with MgO resulted in the formation of magnesium-bearing magnetite, which subsequently reduced the compressive strength of the pellets.

Keywords

Magnetite, Pellet, Mining engineering. Metallurgy, TN1-997, MgO, Hematite, Magnesium-bearing magnetite

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold