Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physica A Statistical Mechanics and its Applications
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geodesic Learning

Geodesic learning
Authors: Barua, Arnab; Hatzikirou, Haralampos; Abe, Sumiyoshi;

Geodesic Learning

Abstract

Learning is a fundamental characteristic of living systems, enabling them to comprehend their environments and make informed decisions. These decision-making processes are inherently influenced by available information about their surroundings and specific objectives. There is an intriguing perspective is that each process is highly efficient under a given set of conditions. A key question, then, is how close to optimality it is or how efficient it is under given conditions. Here, the concept of "geodesic learning" as the optimal reference process, with which each process can be compared, is introduced and formulated on the basis of geometry. The probability distribution describing the state of the composite system consisting of the environment, termed the "information bath", and a decision-maker is characterized by use of the entropic quantities. This enables one to study the system in analogy with thermodynamics. Learning processes are expressed as the changes of parameters contained in the distribution. For a geometric interpretation of the processes, the manifold endowed with the Fisher-Rao metric as the Riemannian metric is considered. This framework allows one to conceptualize the optimality of each process as a state change along a geodesic curve on the manifold, which gives rise to geodesic learning. Then, the bivariate Gaussian model is presented, and the processes of geodesic learning and adaptation are analyzed for illustrating this approach.

25 pages, 2 figures. Revised in large, title changed, new results added

Keywords

Riemannian manifold with Fisher-Rao metric, Biological Physics (physics.bio-ph), geodesic learning, thermodynamic analogs, information bath, FOS: Physical sciences, General and overarching topics; collections, adaptation, Physics - Biological Physics, Disordered Systems and Neural Networks (cond-mat.dis-nn), specific, Condensed Matter - Disordered Systems and Neural Networks, information

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities