Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Informati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Informatics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Informatics
Article . 2024
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Autonomous Data Sampling for High-Resolution Spatiotemporal Fish Biomass Estimates

Authors: Astrid A. Carlsen; Michele Casini; Francesco Masnadi; Olof Olsson; Aron Hejdström; Jonas Hentati-Sundberg;

Autonomous Data Sampling for High-Resolution Spatiotemporal Fish Biomass Estimates

Abstract

Many key ecological dynamics such as biomass distributions are only detectable on a fine spatiotemporal scale. Autonomous data collection with Unmanned Surface Vehicles (USV) creates new possibilities for cost efficient and high-resolution aquatic data sampling. However, the spatial coverage and sampling resolution remain uncertain due to the novelty of the technology. Further, there is no established method for analysing such fine-scale autocorrelated data without aggregation, potentially compromising data resolution. We here used a USV with an echosounder, a conductivity-temperature sensor and a flourometer to collect data from April–July 2019–2023 in a 60x80km area in the central Baltic Sea. The USV covered a total distance of 8000 nmi, over 42–81 days per year, with an average speed of 0.5 m/s. We combined the hydroacoustic data with publicly available oceanographic data from Copernicus Marine Service Information (CMSI) to describe seasonal distribution dynamics of a small pelagic fish community. Key oceanographic variables collected by the USV were correlated with CMSI estimates at daily/monthly resolution, respectively, to test for suitability to scale (Temperature 0.99/0.97; Salinity −0.77/−0.26; Chlorophyll-a 0.12/0.28). We investigated two approaches of Species Distribution Models (SDMs): generalized additive models (GAM) versus spatiotemporal generalized linear mixed effect models (GLMM). The GLMMs explained the observed data better than the GAMs (R2 0.31 and 0.20, respectively). The addition of environmental variables increased the explanatory capability of GAM and GLMM by 25 % and ∼ 3 %, respectively. Due to the high data resolution, we found significant amounts of positive autocorrelation (R: 0.05–0.30) across more than 50 sequential observations (>6 hours). However, we found that diel patterns in fish detection strongly affected the abundance estimates due to vertically migrating species hiding in the ‘acoustic dead zone’ near the seabed. Such dynamics could only be estimated and corrected for in predictions on the high-resolution data, complicating the trade-off between autocorrelation and high-resolution for SDMs. We compared estimates and effect sizes/directions in identical SDMs on 2x2km/month aggregated (i.e non-autocorrelated) observations and non-aggregated (i.e. autocorrelated) observations, and found relatively little difference in spatiotemporal estimates (r = 0.80). For the first time, we predicted the distribution of a small pelagic fish community at a high spatial resolution, in an area essential to breeding top predators, opening up for new applications in ecological studies locally and globally.

Country
Italy
Keywords

Hydro-acoustic, Ecology, Species distribution modelling, Small pelagic community, Information technology, Remote sensing, USV, T58.5-58.64, Spatiotemporal modelling, QH540-549.5, Species distribution modelling; Remote sensing; USV; Hydro-acoustic; Spatiotemporal modelling; Small pelagic community

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold