Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Modeling Microbial Impact on Macrophyte Debris Decomposition in Macrophyte-Dominated Eutrophic Lakes

Authors: Tingting, Yang; Yaqin, Wang; Tong, Zhou; Jing, Yang; Manman, Liu; Yizi, Shang; Yingyuan, Zhang; +1 Authors

Modeling Microbial Impact on Macrophyte Debris Decomposition in Macrophyte-Dominated Eutrophic Lakes

Abstract

The decomposition of macrophytes plays a crucial role in the nutrient cycles of macrophyte-dominated eutrophication lakes. While research on plant decomposition mechanisms and microbial influences has rapid developed, it is curious that plant decomposition models have remained stagnant at the single-stage model from 50 years ago, without endeavor to consider any important factors. Our research conducted in-situ experiments and identified the optimal metrics for decomposition-related microbes, thereby establishing models for microbial impacts on decomposition rates (k_RDR). Using backward elimination in stepwise regression, we found that the optimal subset of independent variables-specifically Gammaproteobacteria-Q-L, Actinobacteriota-Q-L, and Ascomycota-Q-L-increased the adjusted R-squared (Ra2) to 0.93, providing the best modeling for decomposition rate (p = 0.002). Additionally, k_RDR can be modeled by synergic parameters of ACHB-Q-L, LDB-Q-L, and AB-Q-L for bacteria, and SFQ for fungi, albeit with a slightly lower Ra2 of 0.7-0.9 (p < 0.01). The primary contribution of our research lies in two key aspects. Firstly, we introduced optimal metrics for modeling microbes, opting for debris surface microbes over sediment microbes, and prioritizing absolute abundance over relative abundance. Secondly, our model represents a noteworthy advancement in debris modeling. Alongside elucidating the focus and innovative aspects of our work, we also addressed existing limitations and proposed directions for future research. SYNOPSIS: This study explores optimum metrics for decomposition-related microbes, offering precise microbial models for enhanced lake nutrient cycle simulation.

Related Organizations
Keywords

Lakes, Bacteria, Eutrophication, Plants, Environmental Monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!