
<p>In this paper, we introduced a novel group self-supervised learning approach designed to improve visual representation learning. This new method aimed to rectify the limitations observed in conventional self-supervised learning. Traditional methods tended to focus on embedding distortion-invariant in single-view features. However, our belief was that a better representation can be achieved by creating a group of features derived from multiple views. To expand the siamese self-supervised architecture, we increased the number of image instances in each crop, enabling us to obtain an average feature from a group of views to use as a distortion, invariant embedding. The training efficiency has greatly increased with rapid convergence. When combined with a robust linear protocol, this group self-supervised learning model achieved competitive results in CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet-100 classification tasks. Most importantly, our model demonstrated significant convergence gains within just 30 epochs as opposed to the typical 1000 epochs required by most other self-supervised techniques.</p>
T57-57.97, multiple views, Applied mathematics. Quantitative methods, classification tasks, self-supervised learning, QA1-939, siamese network, average feature, Mathematics
T57-57.97, multiple views, Applied mathematics. Quantitative methods, classification tasks, self-supervised learning, QA1-939, siamese network, average feature, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
