
This article studies the impact of algorithmic pricing on market competition when firms collect data to charge personalized prices to their past customers. Pricing algorithms offer to each firm a rich set of pricing strategies combining first and third-degree price discrimination: they can choose for each of their past customers whether to charge them personalized or homogeneous prices. The optimal targeting strategy of each firm consists in charging personalized prices to past customers with the highest willingness to pay and a homogeneous price to the remaining consumers, including past customers with a low valuation on whom a firm has information. This targeting strategy maximizes rent extraction while softening competition between firms compared to classical models where firms target all past customers. In turn, price-undercutting and poaching practices are not sustainable with behavior-based algorithmic pricing, resulting in greater industry profits.
Information Economics and Policy, 66
ISSN:0167-6245
Algorithmic pricing, Data collection, Behavior-based price discrimination
Algorithmic pricing, Data collection, Behavior-based price discrimination
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
