
handle: 11562/1161032
We provide necessary and sufficient conditions for an (Unbiased) Block estimator to have Uniformly Minimum Variance. Our theory parallels the theory of UMVU estimation, the main novel insight being the focus on the covariance among blocks. We use this theory to derive lower variance bounds for block estimators of functionals of high-frequency volatility when the block size is fixed. We further show the relevance of the new theory for the classical problem of estimation of homoskedastic nonparametric regressions with varying mean. Finally, we introduce a new test for the presence of drift in financial data which exploits the precision of BUMVU estimators. The test shows abundant presence of drift in financial data.
Unbiased estimators Minimum variance Fixed block Nonparametric regression Integrated volatility powers Wild bootstrap Drift detection
Unbiased estimators Minimum variance Fixed block Nonparametric regression Integrated volatility powers Wild bootstrap Drift detection
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
