
pmid: 37454612
This paper proposes three novel accelerated inverse-free neurodynamic approaches to solve absolute value equations (AVEs). The first two are finite-time converging approaches and the third one is a fixed-time converging approach. It is shown that the proposed first two neurodynamic approaches converge to the solution of the concerned AVEs in a finite-time while, under some mild conditions, the third one converges to the solution in a fixed-time. It is also shown that the settling time for the proposed fixed-time converging approach has an uniform upper bound for all initial conditions, while the settling times for the proposed finite-time converging approaches are dependent on initial conditions. The proposed neurodynamic approaches have the advantage that they are all robust against bounded vanishing perturbations. The theoretical results are validated by means of a numerical example and an application in boundary value problems.
Numerical methods for differential-algebraic equations, Convex programming, Numerical optimization and variational techniques, neurodynamic approaches, finite-time convergence, fixed-time convergence, absolute value equations, robustness, Neural Networks, Computer
Numerical methods for differential-algebraic equations, Convex programming, Numerical optimization and variational techniques, neurodynamic approaches, finite-time convergence, fixed-time convergence, absolute value equations, robustness, Neural Networks, Computer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
