Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Zurich Open Reposito...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SSRN Electronic Journal
Article . 2023 . Peer-reviewed
Data sources: Crossref
The American Economic Review
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2023
Data sources: Datacite
EconStor
Research . 2023
Data sources: EconStor
EconStor
Research . 2023
Data sources: EconStor
versions View all 8 versions
addClaim

Happy Times: Measuring Happiness Using Response Times

Authors: Liu, Shuo; Netzer, Nick;

Happy Times: Measuring Happiness Using Response Times

Abstract

Surveys measuring happiness or preferences generate discrete ordinal data. Ordered response models, which are used to analyze such data, suffer from an identification problem. Their conclusions depend on distributional assumptions about a latent variable. We propose using response times to solve that problem. Response times contain information about the distribution of the latent variable through a chronometric effect. Using an online survey experiment, we verify the chronometric effect. We then provide theoretical conditions for testing conventional distributional assumptions. These assumptions are rejected in some cases, but overall our evidence is consistent with the qualitative validity of the conventional models. (JEL C14, D60, D91, I31)

Country
Switzerland
Related Organizations
Keywords

non, ddc:330, 2002 Economics and Econometrics, Surveys, 330 Economics, ordinal data, ECON Department of Economics, D60, surveys, 10007 Department of Economics, parametric identification, non-parametric identification, D91, non-parametric, identification, C14, I31, Economics and econometrics, response times

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green