
arXiv: 2107.02900
This paper studies the problem of scheduling urban air mobility trips when travel times are uncertain and capacity at destinations is limited. Urban air mobility, in which air transportation is used for relatively short trips within a city or region, is emerging as a possible component in future transportation networks. Destinations in urban air mobility networks, called vertiports or vertistops, typically have limited landing capacity, and, for safety, it must be guaranteed that an air vehicle will be able to land before it can be allowed to take off. We first present a tractable model of urban air mobility networks that accounts for limited landing capacity and uncertain travel times between destinations with lower and upper travel time bounds. We then establish theoretical bounds on the achievable throughput of the network. Next, we present a tractable algorithm for scheduling trips to satisfy safety constraints and arrival deadlines. The algorithm allows for dynamically updating the schedule to accommodate, e.g., new demands over time. The paper concludes with case studies that demonstrate the algorithm on two networks.
12 pages, 5 figures
Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control
Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
