Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Immuno...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Immunopharmacology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunoinformatic Screening of Marburgvirus Epitopes and Computational Investigations of Epitope-Allele Complexes

Authors: Prabin, Baral; Elumalai, Pavadai; Ziyou, Zhou; Yang, Xu; Christopher K, Tison; Rudramani, Pokhrel; Bernard S, Gerstman; +1 Authors

Immunoinformatic Screening of Marburgvirus Epitopes and Computational Investigations of Epitope-Allele Complexes

Abstract

Marburgvirus (MARV), a member of the Filovirus family, causes severe hemorrhagic fever in humans. Currently, there are no approved vaccines or post exposure treatment methods available against MARV. With the aim of identifying vaccine candidates against MARV, we employ different sequence-based computational methods to predict the MHC-I and MHC-II T-cell epitopes as well as B-cell epitopes for the complete MARV genome. We analyzed the variations in the predicted epitopes among four MARV variants, the Lake Victoria, Angola, Musoke, and Ravn. We used a consensus approach to identify several epitopes, including novel epitopes, and narrowed down the selection based on different parameters such as antigenicity and IC50 values. The selected epitopes can be used in various vaccine constructs that give effective antibody responses. The MHC-I epitope-allele complexes for GP and NP with favorably low IC50 values were investigated using molecular dynamics computations to determine the molecular details of the epitope-allele complexes. This study provides information for further experimental validation of the potential epitopes and the design and development of MARV vaccines.

Related Organizations
Keywords

Marburgvirus, Animals, Epitopes, B-Lymphocyte, Epitopes, T-Lymphocyte, Humans, Marburg Virus Disease, Viral Vaccines, Alleles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!