
AbstractWe propose a systematic algorithmic reverse‐stress testing methodology to create “worst case” scenarios for regulatory stress tests by accounting for losses that arise from distressed portfolio liquidations. First, we derive the optimal bank response for any given shock. Then, we introduce an algorithm which systematically generates scenarios that exploit the key vulnerabilities in banks' portfolio holdings and thus maximize contagion despite banks' optimal response to the shock. We apply our methodology to data of the 2016 European Banking Authority (EBA) stress test, and design worst case scenarios for the portfolio holdings of European banks at the time. Using spectral clustering techniques, we group 10,000 worst‐case scenarios into twelve geographically concentrated families. Our results show that even though there is a wide range of different scenarios within these 12 families, each cluster tends to affect the same banks. An “Anna Karenina” principle of stress testing emerges:Not all stressful scenarios are alike, but every stressful scenario stresses the same banks. These findings suggest that the precise specification of a scenario is not of primal importance as long as the most vulnerable banks are targeted and sufficiently stressed. Finally, our methodology can be used to uncover the weakest links in the financial system and thereby focus supervisory attention on these, thus building a bridge between macroprudential and microprudential stress tests.
reverse stress testing, fire sales, contagion, Financial networks (including contagion, systemic risk, regulation), systemic risk, stress scenario design, stress testing, optimal deleveraging, financial stability
reverse stress testing, fire sales, contagion, Financial networks (including contagion, systemic risk, regulation), systemic risk, stress scenario design, stress testing, optimal deleveraging, financial stability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
