Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Financearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Finance
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
SSRN Electronic Journal
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reverse Stress Testing: Scenario Design for Macroprudential Stress Tests

Reverse stress testing: scenario design for macroprudential stress tests
Authors: Michel Baes; Eric Schaanning;

Reverse Stress Testing: Scenario Design for Macroprudential Stress Tests

Abstract

AbstractWe propose a systematic algorithmic reverse‐stress testing methodology to create “worst case” scenarios for regulatory stress tests by accounting for losses that arise from distressed portfolio liquidations. First, we derive the optimal bank response for any given shock. Then, we introduce an algorithm which systematically generates scenarios that exploit the key vulnerabilities in banks' portfolio holdings and thus maximize contagion despite banks' optimal response to the shock. We apply our methodology to data of the 2016 European Banking Authority (EBA) stress test, and design worst case scenarios for the portfolio holdings of European banks at the time. Using spectral clustering techniques, we group 10,000 worst‐case scenarios into twelve geographically concentrated families. Our results show that even though there is a wide range of different scenarios within these 12 families, each cluster tends to affect the same banks. An “Anna Karenina” principle of stress testing emerges:Not all stressful scenarios are alike, but every stressful scenario stresses the same banks. These findings suggest that the precise specification of a scenario is not of primal importance as long as the most vulnerable banks are targeted and sufficiently stressed. Finally, our methodology can be used to uncover the weakest links in the financial system and thereby focus supervisory attention on these, thus building a bridge between macroprudential and microprudential stress tests.

Related Organizations
Keywords

reverse stress testing, fire sales, contagion, Financial networks (including contagion, systemic risk, regulation), systemic risk, stress scenario design, stress testing, optimal deleveraging, financial stability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
hybrid