
Abstract Predicting volatility is of primary importance for business applications in risk management, asset allocation, and the pricing of derivative instruments. This paper proposes a measurement model that considers the possibly time-varying interaction of realized volatility and asset returns according to a bivariate model to capture its major characteristics: (i) the long-term memory of the volatility process, (ii) the heavy-tailedness of the distribution of returns, and (iii) the negative dependence of volatility and daily market returns. We assess the relevance of the effects of “the volatility of volatility” and time-varying “leverage” to the out-of-sample forecasting performance of the model, and evaluate the density of forecasts of market volatility. Empirical results show that our specification can outperform the benchmark HAR–GARCH model in terms of both point and density forecasts.
Volatility of volatility, Settore SECS-S/03 - STATISTICA ECONOMICA, Settore STAT-02/A - Statistica economica, 330, Volatility prediction, Leverage effect, Score driven models, Realized volatility
Volatility of volatility, Settore SECS-S/03 - STATISTICA ECONOMICA, Settore STAT-02/A - Statistica economica, 330, Volatility prediction, Leverage effect, Score driven models, Realized volatility
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
