
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Shear coupling implies that all grain boundary (GB) migration necessarily creates mechanical stresses/strains and is a key component to the evolution of all polycrystalline microstructures. We present MD simulation data and theoretical analyses that demonstrate the GB shear coupling is not an intrinsic GB property, but rather strongly depends on the type and magnitude of the driving force for migration and temperature. We resolve this apparent paradox by proposing a microscopic theory for GB migration that is based upon a statistical ensemble of line defects (disconnections) that are constrained to lie in the GB. Comparison with the MD results for several GBs provides quantitative validation of the theory as a function of stress, chemical potential jump and temperature.
Condensed Matter - Materials Science, Statistical Mechanics (cond-mat.stat-mech), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
Condensed Matter - Materials Science, Statistical Mechanics (cond-mat.stat-mech), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
