Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article
License: pd
Data sources: UnpayWall
SSRN Electronic Journal
Article . 2019 . Peer-reviewed
Data sources: Crossref
ResearchGate Data
Preprint . 2019
Data sources: Datacite
versions View all 3 versions
addClaim

Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques

Authors: Brummelhuis, Raymond; Luo, Zhongmin;

Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques

Abstract

The 2007-09 financial crisis revealed that the investors in the financial market were more concerned about the future as opposed to the current capital adequacies for banks. Stress testing promises to complement the regulatory capital adequacy regimes, which assess a bank’s current capital adequacy, with the ability to assess its future capital adequacy based on the projected asset-losses and incomes from the forecasting models from regulators and banks. The effectiveness of stress-test rests on its ability to inform the financial market, which depends on whether or not the market has confidence in the model-projected asset-losses and incomes for banks. Post-crisis studies found that the stress-test results are uninformative and receive\ud insignificant market reactions; others question its validity on the grounds of the poor forecast accuracies using linear regression models which forecast the banking-industry incomes measured by Aggregate Net Interest Margin. Instead, our study focuses on NIM forecasting at an individual bank’s level and employs both linear regression and non-linear Machine Learning techniques. First, we present both the linear and non-linear Machine Learning regression techniques used in our study. Then, based on out-of-sample\ud tests and literature-recommended forecasting techniques, we compare the NIM forecast accuracies by 162 models based on 11 different regression techniques, finding that some Machine Learning techniques as well\ud as some linear ones can achieve significantly higher accuracies than the random-walk benchmark, which invalidates the grounds used by the literature to challenge the validity of stress-test. Last, our results from\ud forecast accuracy comparisons are either consistent with or complement those from existing forecasting literature. We believe that the paper is the first systematic study on forecasting bank-specific NIM by Machine Learning Techniques; also, it is a first systematic study on forecast accuracy comparison including both linear and non-linear Machine Learning techniques using financial data for a critical real-world problem; it is a multi-step forecasting example involving iterative forecasting, rolling-origins, recalibration with forecast accuracy measure being scale-independent; robust regression proved to be beneficial for forecasting in presence of outliers. It concludes with policy suggestions and future research directions.

Keywords

ems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid