
arXiv: 1304.0567
The combination of the flexibility of RDF and the expressiveness of SPARQL provides a powerful mechanism to model, integrate and query data. However, these properties also mean that it is nontrivial to write performant SPARQL queries. Indeed, it is quite easy to create queries that tax even the most optimised triple stores. Currently, application developers have little concrete guidance on how to write "good" queries. The goal of this paper is to begin to bridge this gap. It describes 5 heuristics that can be applied to create optimised queries. The heuristics are informed by formal results in the literature on the semantics and complexity of evaluating SPARQL queries, which ensures that queries following these rules can be optimised effectively by an underlying RDF store. Moreover, we empirically verify the efficacy of the heuristics using a set of openly available datasets and corresponding SPARQL queries developed by a large pharmacology data integration project. The experimental results show improvements in performance across 6 state-of-the-art RDF stores.
FOS: Computer and information sciences, Computer Networks and Communications, RDF store, Databases (cs.DB), SPARQL, Biomedical data, Human-Computer Interaction, Computer Science - Databases, Heuristics, Optimisation, Data integration, Software
FOS: Computer and information sciences, Computer Networks and Communications, RDF store, Databases (cs.DB), SPARQL, Biomedical data, Human-Computer Interaction, Computer Science - Databases, Heuristics, Optimisation, Data integration, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
