Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2019
Data sources: zbMATH Open
SSRN Electronic Journal
Article . 2016 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

Dynamic Pricing in High-Dimensions

Dynamic pricing in high-dimensions
Authors: Adel Javanmard; Hamid Nazerzadeh;

Dynamic Pricing in High-Dimensions

Abstract

We study the pricing problem faced by a firm that sells a large number of products, described via a wide range of features, to customers that arrive over time. Customers independently make purchasing decisions according to a general choice model that includes products features and customers' characteristics, encoded as $d$-dimensional numerical vectors, as well as the price offered. The parameters of the choice model are a priori unknown to the firm, but can be learned as the (binary-valued) sales data accrues over time. The firm's objective is to minimize the regret, i.e., the expected revenue loss against a clairvoyant policy that knows the parameters of the choice model in advance, and always offers the revenue-maximizing price. This setting is motivated in part by the prevalence of online marketplaces that allow for real-time pricing. We assume a structured choice model, parameters of which depend on $s_0$ out of the $d$ product features. We propose a dynamic policy, called Regularized Maximum Likelihood Pricing (RMLP) that leverages the (sparsity) structure of the high-dimensional model and obtains a logarithmic regret in $T$. More specifically, the regret of our algorithm is of $O(s_0 \log d \cdot \log T)$. Furthermore, we show that no policy can obtain regret better than $O(s_0 (\log d + \log T))$.

47 pages

Related Organizations
Keywords

Applications of statistics to actuarial sciences and financial mathematics, FOS: Computer and information sciences, Computer Science - Machine Learning, revenue management, Estimation in multivariate analysis, sparsity, regret, Machine Learning (stat.ML), Microeconomic theory (price theory and economic markets), high-dimensional regression, Machine Learning (cs.LG), Statistics - Machine Learning, dynamic pricing, maximum likelihood

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
bronze