
arXiv: 1609.07574
We study the pricing problem faced by a firm that sells a large number of products, described via a wide range of features, to customers that arrive over time. Customers independently make purchasing decisions according to a general choice model that includes products features and customers' characteristics, encoded as $d$-dimensional numerical vectors, as well as the price offered. The parameters of the choice model are a priori unknown to the firm, but can be learned as the (binary-valued) sales data accrues over time. The firm's objective is to minimize the regret, i.e., the expected revenue loss against a clairvoyant policy that knows the parameters of the choice model in advance, and always offers the revenue-maximizing price. This setting is motivated in part by the prevalence of online marketplaces that allow for real-time pricing. We assume a structured choice model, parameters of which depend on $s_0$ out of the $d$ product features. We propose a dynamic policy, called Regularized Maximum Likelihood Pricing (RMLP) that leverages the (sparsity) structure of the high-dimensional model and obtains a logarithmic regret in $T$. More specifically, the regret of our algorithm is of $O(s_0 \log d \cdot \log T)$. Furthermore, we show that no policy can obtain regret better than $O(s_0 (\log d + \log T))$.
47 pages
Applications of statistics to actuarial sciences and financial mathematics, FOS: Computer and information sciences, Computer Science - Machine Learning, revenue management, Estimation in multivariate analysis, sparsity, regret, Machine Learning (stat.ML), Microeconomic theory (price theory and economic markets), high-dimensional regression, Machine Learning (cs.LG), Statistics - Machine Learning, dynamic pricing, maximum likelihood
Applications of statistics to actuarial sciences and financial mathematics, FOS: Computer and information sciences, Computer Science - Machine Learning, revenue management, Estimation in multivariate analysis, sparsity, regret, Machine Learning (stat.ML), Microeconomic theory (price theory and economic markets), high-dimensional regression, Machine Learning (cs.LG), Statistics - Machine Learning, dynamic pricing, maximum likelihood
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
