Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Marketing Letters
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marketing Letters
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated Mixed Logit and Latent Variable Models

Authors: Vishva Manohara Danthurebandara; Martina Vandebroek; Jie Yu;

Integrated Mixed Logit and Latent Variable Models

Abstract

A traditional discrete choice model assumes that an individual's decision-making process is based on utility maximization and that the systematic part of the utility function depends on some observable attributes and covariates. These attributes and covariates however can only explain part of the utility and a large part remains unexplained. In recent years, researchers have recognized that psychological factors such as attitudes, lifestyle and values can affect an alternative's utility and hence the individual's choices. Therefore, extending the traditional discrete choice model by incorporating those latent or unobservable factors, can help to better understand the individual's decision making process and therefore to yield more reliable part-worth estimates and market share predictions.Several integrated choice and latent variable (ICLV) models which merge the conditional logit model with a structural equation model exist in the literature. They assume homogeneity in the part-worths and use latent variables to model the heterogeneity among the respondents. The current research uses the mixed logit model that describes the heterogeneity in the part-worths and uses the latent variables to decrease the unexplained part of the heterogeneity. The empirical study that we conducted to assess student preferences on mobile phone features shows these ICLV models perform very well with respect to model t and prediction.Furthermore, we compare the different estimation procedures that exist in the literature. Results show that, as expected, the simultaneous procedure where we estimate the structural equation model (SEM) and the choice model simultaneously, gives better model fit and more accurate predictions compared to the sequential procedure that estimates the SEM first and then the choice model taking the estimated factor scores into account. But the gain of the simultaneous procedure is relatively small. Therefore one can use the easier sequential procedure without losing much efficiency if needed.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
bronze