
doi: 10.2139/ssrn.2026916
The energy of a graph Γ is the sum of the absolute values of the eigenvalues of the adjacency matrix of Γ. Seidel switching is an operation on the edge set of Γ. In some special cases Seidel switching does not change the spectrum, and therefore the energy. Here we investigate when Seidel switching changes the spectrum, but not the energy. We present an infinite family of examples with very large (possibly maximal) energy.The Seidel energy S(Γ) of Γ is defined to be the sum of the absolute values of the eigenvalues of the Seidel matrix of Γ. It follows that S(Γ) is invariant under Seidel switching and taking complements. We obtain upper and lower bounds for S(Γ), characterize equality for the upper bound, and formulate a conjecture for the lower bound.
Seidel switching; Seidel matrix; graph spectra; graph energy., Seidel switching;Seidel matrix;graph spectra;graph energy., Seidel matrix, graph energy., graph spectra, Seidel switching, jel: jel:C0
Seidel switching; Seidel matrix; graph spectra; graph energy., Seidel switching;Seidel matrix;graph spectra;graph energy., Seidel matrix, graph energy., graph spectra, Seidel switching, jel: jel:C0
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
