
doi: 10.2139/ssrn.1908160
In a variety of settings, some payoff-relevant item spreads along a network of connected individuals. In some cases, the item will benefit those who receive it (for example, a music download, a stock tip, news about a new research funding source, etc.) while in other cases the impact may be negative (for example, viruses, both biological and electronic, financial contagion, and so on). Often, good and bad items may propagate along the same networks, so individuals must weigh the costs and benefits of being more or less connected to the network. The situation becomes more complicated (and more interesting) if individuals can also put effort into security, where security can be thought of as a screening technology that allows an individual to keep getting the benefits of network connectivity while blocking out the bad items. Drawing on the network literatures in economics, epidemiology, and applied math, we formulate a model of network security that can be used to study individual incentives to expand and secure networks and characterize properties of a symmetric equilibrium.
social networks; network security; network robustness; contagion; random graphs, jel: jel:I18, jel: jel:D85, jel: jel:C73
social networks; network security; network robustness; contagion; random graphs, jel: jel:I18, jel: jel:D85, jel: jel:C73
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
