
doi: 10.2139/ssrn.1800758
This paper describes the best way to improve the optimization of spatial databases: through spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and they are presented, analyzed and compared in this paper. Also there are given a few examples of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spatial databases offer special features that can be very helpful when needing to represent such data. But in terms of storage and time costs, spatial data can require a lot of resources. This is why optimizing the database is one of the most important aspects when working with large volumes of data.
Optimization, TK7885-7895, Computer engineering. Computer hardware, Spatial Index, R-tree, Spatial Database, Quadtree, Bibliography. Library science. Information resources, Z
Optimization, TK7885-7895, Computer engineering. Computer hardware, Spatial Index, R-tree, Spatial Database, Quadtree, Bibliography. Library science. Information resources, Z
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
