
doi: 10.2139/ssrn.1601236
In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. The two most widely known and used are the Scalar BEKK model of Engle and Kroner (1995) and Ding and Engle (2001), and the DCC model of Engle (2002). Some recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of MGARCH models, namely BEKK, DCC, Corrected DCC (cDCC) of Aeilli (2008), CCC of Bollerslev (1990), Exponentially Weighted Moving Average, and covariance shrinking of Ledoit and Wolf (2004), using the historical data of 89 US equities. Our methods follow some of the approach described in Patton and Sheppard (2009), and contribute to the literature in several directions. First, we consider a wide range of models, including the recent cDCC model and covariance shrinking. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Weighted Likelihood Ratio test of Amisano and Giacomini (2007). Third, we examine how the model rankings are influenced by the cross-sectional dimension of the problem.
Covariance forecasting, model confidence set, model ranking, MGARCH, model comparison., Covariance forecasting; model confidence set; model ranking; MGARCH; model comparison, MGARCH, covariance forecasting, model comparison, model confidence set, model ranking, EUR ESE 31, jel: jel:C52, jel: jel:C53, jel: jel:C32
Covariance forecasting, model confidence set, model ranking, MGARCH, model comparison., Covariance forecasting; model confidence set; model ranking; MGARCH; model comparison, MGARCH, covariance forecasting, model comparison, model confidence set, model ranking, EUR ESE 31, jel: jel:C52, jel: jel:C53, jel: jel:C32
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
