Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Economics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Economics
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 9 versions
addClaim

Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH

Authors: Chang, Chia-Lin; McAleer, Michael; Tansuchat, Roengchai;

Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH

Abstract

The paper examines the performance of several multivariate volatility models, namely CCC, VARMA-GARCH, DCC, BEKK and diagonal BEKK, for the crude oil spot and futures returns of two major benchmark international crude oil markets, Brent and WTI, to calculate optimal portfolio weights and optimal hedge ratios, and to suggest a crude oil hedge strategy. The empirical results show that the optimal portfolio weights of all multivariate volatility models for Brent suggest holding futures in larger proportions than spot. For WTI, however, DCC, BEKK and diagonal BEKK suggest holding crude oil futures to spot, but CCC and VARMA-GARCH suggest holding crude oil spot to futures. In addition, the calculated optimal hedge ratios (OHRs) from each multivariate conditional volatility model give the time-varying hedge ratios, and recommend to short in crude oil futures with a high proportion of one dollar long in crude oil spot. Finally, the hedging effectiveness indicates that diagonal BEKK (BEKK) is the best (worst) model for OHR calculation in terms of reducing the variance of the portfolio.

Countries
Japan, Netherlands
Keywords

330, optimal hedge ratio, Multivariate GARCH, conditional correlations, crude oil prices, optimal hedge ratio, optimal portfolio weights, hedging strategies., crude oil prices, conditional correlations, conditional correlations, crude oil prices, hedging strategies, multivariate GARCH, optimal hedge ratio, optimal portfolio weights, optimal portfolio weights, hedging strategies, Multivariate GARCH, EUR ESE 31, Multivariate GARCH; conditional correlations; crude oil prices; optimal hedge ratio; optimal portfolio weights; hedging strategies, jel: jel:C32, jel: jel:C22, jel: jel:G32, jel: jel:G11, jel: jel:G17

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    237
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
237
Top 1%
Top 1%
Top 10%
bronze