
doi: 10.2139/ssrn.1444896
Psychological evidence suggests that people’s learning behavior is often prone to a “myside bias†or “irrational belief persistence†in contrast to learning behavior exclusively based on objective data. In the context of Bayesian learning such a bias may result in diverging posterior beliefs and attitude polarization even if agents receive identical information. Such patterns cannot be explained by the standard model of rational Bayesian learning that implies convergent beliefs. As our key contribution, we therefore develop formal models of Bayesian learning with psychological bias as alternatives to rational Bayesian learning. We derive condi- tions under which beliefs may diverge in the learning process and thus conform with the psychological evidence. Key to our approach is the assumption of ambiguous beliefs that are formalized as non-additive probability measures arising in Choquet expected utility theory. As a specific feature of our approach, our models of Bayesian learning with psychological bias reduce to rational Bayesian learning in the absence of ambiguity.
330, 300, jel: jel:D83, jel: jel:C79
330, 300, jel: jel:D83, jel: jel:C79
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
