
doi: 10.2139/ssrn.1107685
There are two unique volatility surfaces associated with any arbitrage-free set of standard European option prices, the implied volatility surface and the local volatility surface. Several papers have discussed the stochastic differential equations for implied volatilities that are consistent with these option prices but the static and dynamic no-arbitrage conditions are complex, mainly due to the large (or even infinite) dimensions of the state probability space. These no-arbitrage conditions are also instrument-specific and have been specified for some simple classes of options. However, the problem is easier to resolve when we specify stochastic differential equations for local volatilities instead. And the option prices and hedge ratios that are obtained by making local volatility stochastic are identical to those obtained by making instantaneous volatility or implied volatility stochastic. After proving that there is a one-to-one correspondence between the stochastic implied volatility and stochastic local volatility approaches, we derive a simple dynamic no-arbitrage condition for the stochastic local volatility model that is model-specific. The condition is very easy to check in local volatility models having only a few stochastic parameters.
Local volatility, stochastic volatility, unified theory of volatility, local volatility dynamics, jel: jel:C16, jel: jel:G13
Local volatility, stochastic volatility, unified theory of volatility, local volatility dynamics, jel: jel:C16, jel: jel:G13
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
