Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2010
Data sources: zbMATH Open
SSRN Electronic Journal
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Complex Logarithms in Heston-Like Models

Complex logarithms in Heston-like models
Authors: Lord, Roger; Kahl, Christian;

Complex Logarithms in Heston-Like Models

Abstract

Summary: The characteristic functions of many affine jump-diffusion models, such as Heston's stochastic volatility model and all of its extensions, involve multivalued functions such as the complex logarithm. If we restrict the logarithm to its principal branch, as is done in most software packages, the characteristic function can become discontinuous, leading to completely wrong option prices if options are priced by Fourier inversion. In this paper, we prove without any restrictions that there is a formulation of the characteristic function in which the principal branch is the correct one. Because this formulation is easier to implement and numerically more stable than the so-called rotation count algorithm of Kahl and Jäckel, we solely focus on its stability in this paper. This paper shows how complex discontinuities can be avoided in the variance gamma and Schöbel-Zhu models, as well as in the exact simulation algorithm of the Heston model, recently proposed by Broadie and Kaya.

Related Organizations
Keywords

affine jump-diffusion, Applications of stochastic analysis (to PDEs, etc.), Schöbel-Zhu, characteristic function, Derivative securities (option pricing, hedging, etc.), Fourier inversion, variance gamma, exact simulation, stochastic volatility, option pricing, Financial applications of other theories, Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.), complex logarithm, Heston

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!