
The current widespread use of calcium silicate or aluminate hydrate binder systems in the construction industry finds its roots in the Antique world where mixtures of calcined lime and finely ground reactive (alumino-)silicate materials were pioneered and developed as competent inorganic binders. Architectural remains of the Minoan civilization (2000-1500 BC) on Crete have shown evidence of the combined use of slaked lime and additions of finely ground potsherds to produce stronger and more durable lime mortars suitable for water-proof renderings in baths, cisterns and aqueducts (Spence and Cook 1983). It is not clear when and where mortar technology evolved to incorporate volcanic pumice and ashes as a functional supplement. A plausible site would be the Akrotiri settlement at Santorin (Greece), where archeological indications of strong ties with the Minoan culture were found and large quantities of suitable highly siliceous volcanic ash were present. This so-called Santorin earth has been used as a pozzolan in the Eastern Mediterranean until recently (Kitsopoulos and Dunham 1996). Evidence of the deliberate use of this and other volcanic materials by the ancient Greeks dates back to at least 500-400 BC, as uncovered at the ancient city of Kamiros, Rhodes (Efstathiadis 1978; Idorn 1997). In the subsequent centuries the technological knowledge was spread to the mainland (Papayianni and Stefanidou 2007) and was eventually adopted and improved by the Romans (Mehta 1987). The Roman alternatives for Santorin earth were volcanic pumices or tuff found in neighboring territories, the most famous ones found in Pozzuoli (Naples), hence the name pozzolan, and in Segni (Latium). Preference was given to natural pozzolan sources, but crushed ceramic waste was frequently used when natural deposits were not locally available. The exceptional lifetime and preservation condition of some of the most famous Roman buildings such as the Pantheon or the Pont du …
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 465 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
