
A popular model of Himalayan metamorphic and structural evolution argues that partial melting of deeply buried rocks triggered crustal weakening, ductile flow, orogenic collapse, and genesis of leucogranites. Here, we review the origins and evolution of partial melts and leucogranites to demonstrate that they are largely incidental to deformation. Although a pulse of orogenic collapse and leucogranite crystallization occurred at 15–25 Ma, pervasive partial melts formed as much as 20 My earlier. Thus, leucogranites date extraction and transport, not necessarily melting onset. Extensional structures and distributed extensional strain occur in many rocks that lack partial melt and leucogranites, indicating these are not prerequisite to facilitate orogenic collapse. Most mass transfer appears to occur via thrusting, even in partially molten rocks.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
