
arXiv: 2108.08385
The coupled interior–atmosphere system of terrestrial exoplanets remains poorly understood. Exoplanets show a wide variety of sizes, densities, surface temperatures, and interior structures, with important knock-on effects for this coupled system. Many exoplanets are predicted to have a “stagnant lid” at the surface, with a rigid stationary crust, sluggish mantle convection, and only minor volcanism. However, if exoplanets have Earth-like plate tectonics, which involves several discrete, slowly moving plates and vigorous tectono-magmatic activity, then this may be critical for planetary habitability and have implications for the development (and evolution) of life in the galaxy. Here, we summarize our current knowledge of coupled planetary dynamics in the context of exoplanet diversity.
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
