
doi: 10.2118/190271-ms
Abstract Alkaline-surfactant-polymer (ASP) flooding is an effective technique to improve oil recovery. It has been applied typically after a water flood. Recently, there has been a successful field test where an ASP flood was conducted after a polymer flood. Is the ASP flood after a polymer flood more effective than an ASP flood after a water flood? It is difficult to conduct this experiment in exactly the same location in a field. The goal of this study is to answer this question in a laboratory heterogeneous quarter 5-spot model. A heterogeneous quarter 5-spot sand pack of size 10″ × 10″ × 1″ was constructed. Two sands with a permeability contrast of 10:1 were packed into a 2D square steel cell. An alkali-surfactant formulation was identified that produced ultra-low interfacial tension with the reservoir oil (27 cp). In one experiment (WF-ASP), waterflood was conducted first followed by the ASP flood. In a second experiment (PF-ASP), polymer flood was conducted first followed by the ASP flood. The ASP formulation and slug size were kept the same. Secondary water flood of the heterogeneous quarter 5-spot recovered 22% OOIP. Post-waterflood ASP flood recovered 32% OOIP additional oil with a cumulative (WF-ASP) oil recovery of 54%. Secondary polymer flood of the same heterogeneous quarter 5-spot yielded 50% OOIP. Post-polymerflood ASP flood recovered 32% OOIP additional oil with a cumulative (PF-ASP) oil recovery of 82% OOIP. The water flood and the subsequent ASP flood swept a large part of the high permeability region and a small part of the low permeability region. The polymer flood swept all of the high permeability region and most of the low permeability region. The subsequent ASP flood swept the polymer-swept regions. These experiments demonstrate that the polymer flood - ASP flood combination is more effective than the water flood - ASP flood combination.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
