Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Analytical Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Analytical Sciences
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Paper-based DPPH Assay for Antioxidant Activity Analysis

Authors: Kitima, Sirivibulkovit; Souksanh, Nouanthavong; Yupaporn, Sameenoi;

Paper-based DPPH Assay for Antioxidant Activity Analysis

Abstract

We report on a paper-based 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) assay for a simple, inexpensive, low reagent and sample consumption and high throughput analysis of antioxidant activity. The paper-based device was fabricated using a lamination method to create a 5-mm in diameter circular test zone that was embedded with a DPPH reagent. The analysis was carried out in one-step by dropping an antioxidant/sample onto the test zone. After reduction by the antioxidant, the DPPH radicals become stable DPPH molecules, resulting in a change in color from deep violet to pale yellow. The violet color intensity of DPPH was inversely proportional to the antioxidant activity of the samples, and was measured using imaging software. A high precision and a low limit of detection were found in the analysis of six standard antioxidants including gallic acid, trolox, ascorbic acid, caffeic acid, vanilliic acid and quercetin. The device was then validated against the traditional spectrophotometric DPPH assay by analyzing the antioxidant activity of 7 tea samples. The results showed no significant difference for gallic acid equivalent for all 7 samples obtained from the two methods at the 95% confidence level, indicating that the developed method was reliable for antioxidant activity analysis of real samples. Finally, the paper-based DPPH device was found to be stable over 10 days when stored in a refrigerator (2 - 4°C), making it an easy-to-use device for end-users.

Related Organizations
Keywords

Paper, Picrates, Refrigeration, Biphenyl Compounds, Antioxidants

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 1%
Top 10%
Top 1%
gold