<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Apatite is a superb mineral by which to investigate the nature of fluids that have passed through and altered a rock (metasomatic processes). Its ubiquity allows it to act as a reservoir for P, F, Cl, OH, CO2, and the rare earth elements. It is also a powerful thermochronometer and can be chemically altered by aqueous brines (NaCl–KCl–CaCl2–H2O), pure H2O, and aqueous fluids containing CO2, HCl, H2SO4, and/or F. Thus, apatite is the perfect tracker of metasomatic fluids, providing information on the timing and duration of metasomatism, the temperature of the fluids, and the composition of the fluids, all of which can feed back into the history of the host rock itself.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 320 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |