Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Translational Lung C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Translational Lung Cancer Research
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors

Authors: Rita, Dorantes-Heredia; José Manuel, Ruiz-Morales; Fernando, Cano-García;

Histopathological transformation to small-cell lung carcinoma in non-small cell lung carcinoma tumors

Abstract

Lung cancer is the principal cause of cancer-related death worldwide. The use of targeted therapies, especially tyrosine kinase inhibitors (TKIs), in specific groups of patients has dramatically improved the prognosis of this disease, although inevitably some patients will develop resistance to these drugs during active treatment. The most common cancer-associated acquired mutation is the epidermal growth factor receptor (EGFR) Thr790Met (T790M) mutation. During active treatment with targeted therapies, histopathological transformation to small-cell lung carcinoma (SCLC) can occur in 3-15% of patients with non-small-cell lung carcinoma (NSCLC) tumors. By definition, SCLC is a high-grade tumor with specific histological and genetic characteristics. In the majority of cases, a good-quality hematoxylin and eosin (H&E) stain is enough to establish a diagnosis. Immunohistochemistry (IHC) is used to confirm the diagnosis and exclude other neoplasia such as sarcomatoid carcinomas, large-cell carcinoma, basaloid squamous-cell carcinoma, chronic inflammation, malignant melanoma, metastatic carcinoma, sarcoma, and lymphoma. A loss of the tumor-suppressor protein retinoblastoma 1 (RB1) is found in 100% of human SCLC tumors; therefore, it has an essential role in tumorigenesis and tumor development. Other genetic pathways probably involved in the histopathological transformation include neurogenic locus notch homolog (NOTCH) and achaete-scute homolog 1 (ASCL1). Histological transformation to SCLC can be suspected in NSCLC patients who clinically deteriorate during active treatment. Biopsy of any new lesion in this clinical setting is highly recommended to rule out a SCLC transformation. New studies are trying to assess this histological transformation by noninvasive measures such as measuring the concentration of serum neuron-specific enolase.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research