Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Cardiothor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of Cardiothoracic Surgery
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY NC ND
Data sources: PubMed Central
ASVIDE
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pathology and pathophysiology of the aortic root.

Authors: Chung, Jennifer Chia-Ying;

Pathology and pathophysiology of the aortic root.

Abstract

Pathologies of the aortic root amenable to repair with valve preservation include aneurysm formation, development of aortic insufficiency (AI) and aortic dissection. In the normal aortic root, the walls are constructed of 50-70 layers of concentric lamellar units. These units consist of sheets of elastin sandwiching smooth muscle cells interspersed with collagen and glycosaminoglycans. Medial degeneration results in disruption of the extracellular matrix (ECM), loss of smooth muscle cells and pooling of proteoglycans/glycosaminoglycans. These structural changes are associated with aneurysm formation. Aortic root aneurysms are commonly linked to hereditary thoracic aortic diseases including Marfan syndrome and Loeys-Dietz syndrome. One important pathway for hereditary thoracic aortic diseases is the transforming growth factor-β (TGF-β) cell-signalling pathway. Pathogenic gene mutations affecting various levels of this pathway have been implicated in aortic root aneurysm formation. Secondary effects of aneurysm formation include AI. Severe chronic AI leads to a pressure and volume load on the heart. Once symptoms develop or significant left ventricular remodelling and dysfunction occurs, the patient's prognosis is poor without surgery. Another consequence of aneurysm formation and medial degeneration is the risk of aortic dissection. Aortic root surgery is performed in 34-41% of surgeries for type A aortic dissection. Predicting those who will experience aortic dissections remains a challenge. Finite element analysis, study of fluid-structure interactions and aortic wall biomechanics are important areas of ongoing research.

Keywords

Keynote Lecture Series

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold
Related to Research communities