Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2023
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2023
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidative Stress in Pregnancy

Authors: Konrad Grzeszczak; Natalia Łanocha-Arendarczyk; Witold Malinowski; Paweł Ziętek; Danuta Kosik-Bogacka;

Oxidative Stress in Pregnancy

Abstract

Recent years have seen an increased interest in the role of oxidative stress (OS) in pregnancy. Pregnancy inherently heightens susceptibility to OS, a condition fueled by a systemic inflam-matory response which culminates in an elevated presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the circulatory system. The amplified OS in pregnancy can trigger a series of detrimental outcomes such as underdevelopment, abnormal placental function, and a host of pregnancy complications, including pre-eclampsia, embryonic resorp-tion, recurrent pregnancy loss, fetal developmental anomalies, intrauterine growth restriction, and in extreme instances, fetal death. The body’s response to mitigate the uncontrolled increase in RNS/ROS levels involves trace elements that take part in non-enzymatic and enzymatic defense mechanisms, namely, copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), and selenium (Se). Determination of ROS concentrations poses a challenge due to their short lifespan, prompting the use of marker proteins, including malondialdehyde (MDA), superoxide dis-mutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), lipid peroxidation (LPO), catalase (CAT), and glutathione (GSH). These markers, indicative of redox stress intensity, can offer indirect assessments of pregnancy complications. Given the limitations in conducting experimental studies on pregnant women, animal models serve as valuable substitutes for in-depth research. This review delves into the mechanism of OS in pregnancy and underscores the pivotal role of markers in its evaluation.

Keywords

Glutathione Peroxidase, Superoxide Dismutase, Placenta, trace elements, Review, Catalase, Microbiology, Glutathione, QR1-502, Antioxidants, Pregnancy Complications, Oxidative Stress, Pregnancy, oxidative stress, Animals, Humans, Female, pregnancy, Reactive Oxygen Species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 1%
Green
gold