
A double Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2, 3} 2 with the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for 3 which f(v) = 3 or two vertices v1 and v2 for which f(v1) = f(v2) = 2, and every vertex u for which 4 f(u) = 1 is adjacent to at least one vertex v for which f(v) ≥ 2. The weight of a double Roman dominating function f is the value w(f) = ∑u∈V(G) 5 f(u). The minimum weight over all double 6 Roman dominating functions on a graph G is called the double Roman domination number γdR(G) 7 of G. In this paper we determine the exact value of the double Roman domination number of the 8 generalized Petersen graphs P(n, 2) by using a discharging approach.
applied_mathematics
applied_mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
